Modelling Human Word Learning and Recognition Using Visually Grounded Speech

Danny Merkx*, Sebastiaan Scholten, Stefan L. Frank, Mirjam Ernestus, Odette Scharenborg

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

2 Citations (Scopus)
39 Downloads (Pure)

Abstract

Many computational models of speech recognition assume that the set of target words is already given. This implies that these models learn to recognise speech in a biologically unrealistic manner, i.e. with prior lexical knowledge and explicit supervision. In contrast, visually grounded speech models learn to recognise speech without prior lexical knowledge by exploiting statistical dependencies between spoken and visual input. While it has previously been shown that visually grounded speech models learn to recognise the presence of words in the input, we explicitly investigate such a model as a model of human speech recognition. We investigate the time course of noun and verb recognition as simulated by the model using a gating paradigm to test whether its recognition is affected by well-known word competition effects in human speech processing. We furthermore investigate whether vector quantisation, a technique for discrete representation learning, aids the model in the discovery and recognition of words. Our experiments show that the model is able to recognise nouns in isolation and even learns to properly differentiate between plural and singular nouns. We also find that recognition is influenced by word competition from the word-initial cohort and neighbourhood density, mirroring word competition effects in human speech comprehension. Lastly, we find no evidence that vector quantisation is helpful in discovering and recognising words, though our gating experiment does show that the LSTM-VQ model is able to recognise the target words earlier.

Original languageEnglish
Pages (from-to)272-288
Number of pages17
JournalCognitive Computation
Volume15
Issue number1
DOIs
Publication statusPublished - 2022

Keywords

  • Computational modelling
  • Deep learning
  • Human speech recognition
  • Multi-modal learning
  • Vector quantisation

Fingerprint

Dive into the research topics of 'Modelling Human Word Learning and Recognition Using Visually Grounded Speech'. Together they form a unique fingerprint.

Cite this