TY - JOUR
T1 - Moisture source changes contributed to different precipitation changes over the northern and southern Tibetan Plateau
AU - Zhang, Chi
AU - Tang, Qiuhong
AU - Chen, Deliang
AU - Van Der Ent, Ruud J.
AU - Liu, Xingcai
AU - Li, Wenhong
AU - Haile, Gebremedhin Gebremeskel
N1 - Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
PY - 2019
Y1 - 2019
N2 -
Precipitation on the Tibetan Plateau (TP) showed different spatial changes during 1979-2016, with an increasing trend over the northern Tibetan Plateau (NTP) and a slightly negative trend over the southern Tibetan Plateau (STP). The changes in precipitation moisture sources over the NTP and STP are investigated using the improved Water Accounting Model with an atmospheric reanalysis as well as observational precipitation and evaporation data. The results show the region in the northwest (region NW), ranging from the TP to Europe dominated by the westerlies, provides 38.9% of precipitation moisture for the NTP, and the region in the southeast (region SE), ranging from the TP to the Indian Ocean and Indochina dominated by the Asian monsoons, provides 51.4% of precipitation moisture for the STP. For the precipitation increase over the NTP, the SE and TP are the main contributors, contributing around 35.8% and 51.7% of the increase, respectively. The contributions from the SE and TP to the STP are, however, minor and insignificant. Meanwhile, the NW shows a negative trend of -4.2 ± 2.9mmyr
-1
decade
-1
(significant at the 0.01 level), which contributes to the negative precipitation trend over the STP. Results during the wet season indicate that moisture sources from the areas dominated by the Asian monsoons have contributed more precipitated moisture for the NTP, but not for the STP. Further analysis reveals that precipitated moisture originating from the Indian subcontinent has increased for the NTP while it has decreased for the STP during 1979-2016.
AB -
Precipitation on the Tibetan Plateau (TP) showed different spatial changes during 1979-2016, with an increasing trend over the northern Tibetan Plateau (NTP) and a slightly negative trend over the southern Tibetan Plateau (STP). The changes in precipitation moisture sources over the NTP and STP are investigated using the improved Water Accounting Model with an atmospheric reanalysis as well as observational precipitation and evaporation data. The results show the region in the northwest (region NW), ranging from the TP to Europe dominated by the westerlies, provides 38.9% of precipitation moisture for the NTP, and the region in the southeast (region SE), ranging from the TP to the Indian Ocean and Indochina dominated by the Asian monsoons, provides 51.4% of precipitation moisture for the STP. For the precipitation increase over the NTP, the SE and TP are the main contributors, contributing around 35.8% and 51.7% of the increase, respectively. The contributions from the SE and TP to the STP are, however, minor and insignificant. Meanwhile, the NW shows a negative trend of -4.2 ± 2.9mmyr
-1
decade
-1
(significant at the 0.01 level), which contributes to the negative precipitation trend over the STP. Results during the wet season indicate that moisture sources from the areas dominated by the Asian monsoons have contributed more precipitated moisture for the NTP, but not for the STP. Further analysis reveals that precipitated moisture originating from the Indian subcontinent has increased for the NTP while it has decreased for the STP during 1979-2016.
KW - Climate change
KW - Climatology
KW - Moisture/moisture budget
KW - Water budget
UR - http://www.scopus.com/inward/record.url?scp=85063568380&partnerID=8YFLogxK
U2 - 10.1175/JHM-D-18-0094.1
DO - 10.1175/JHM-D-18-0094.1
M3 - Article
AN - SCOPUS:85063568380
VL - 20
SP - 217
EP - 229
JO - Journal of Hydrometeorology
JF - Journal of Hydrometeorology
SN - 1525-755X
IS - 2
ER -