TY - JOUR
T1 - Monte Carlo Assessment of the Impact of Oscillatory and Pulsating Boundary Conditions on the Flow Through Porous Media
AU - Rahrah, Menel
AU - Vermolen, Fred
PY - 2018
Y1 - 2018
N2 - Stress and water injection induce deformations and changes in pore pressure in the soil. The interaction between the mechanical deformations and the flow of water induces a change in porosity and permeability, which results in nonlinearity. To investigate this interaction and the impact of mechanical vibrations and pressure pulses on the flow rate through the pores of a porous medium under a pressure gradient, a poroelastic model is proposed. In this paper, a Galerkin finite element method is applied for solving the quasi-static Biot’s consolidation problem for poroelasticity, considering nonlinear permeability. Space discretisation using Taylor–Hood elements is considered, and the implicit Euler scheme for time stepping is used. Furthermore, Monte Carlo simulations are performed to quantify the impact of variation in the parameters on the model output. Numerical results show that pressure pulses and soil vibrations in the direction of the flow increase the amount of water that can be injected into a deformable fluid-saturated porous medium.
AB - Stress and water injection induce deformations and changes in pore pressure in the soil. The interaction between the mechanical deformations and the flow of water induces a change in porosity and permeability, which results in nonlinearity. To investigate this interaction and the impact of mechanical vibrations and pressure pulses on the flow rate through the pores of a porous medium under a pressure gradient, a poroelastic model is proposed. In this paper, a Galerkin finite element method is applied for solving the quasi-static Biot’s consolidation problem for poroelasticity, considering nonlinear permeability. Space discretisation using Taylor–Hood elements is considered, and the implicit Euler scheme for time stepping is used. Furthermore, Monte Carlo simulations are performed to quantify the impact of variation in the parameters on the model output. Numerical results show that pressure pulses and soil vibrations in the direction of the flow increase the amount of water that can be injected into a deformable fluid-saturated porous medium.
KW - Biot’s consolidation model
KW - Galerkin finite element method
KW - Pressure pulses
KW - Travelling waves
KW - Uncertainty quantification
UR - http://www.scopus.com/inward/record.url?scp=85043386468&partnerID=8YFLogxK
UR - http://resolver.tudelft.nl/uuid:dd97fa80-4979-49f6-9850-4a378ff33443
U2 - 10.1007/s11242-018-1028-z
DO - 10.1007/s11242-018-1028-z
M3 - Article
AN - SCOPUS:85043386468
SN - 0169-3913
VL - 123
SP - 125
EP - 146
JO - Transport in Porous Media
JF - Transport in Porous Media
ER -