Motorcycle simulator subjective and objective validation for low speed maneuvering

Marco Grottoli*, Max Mulder, Riender Happee

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

10 Downloads (Pure)

Abstract

The use of driving simulators for training and for development of new vehicles is widely spread in the automotive industry. In the last decade, a few motorcycle riding simulators have been developed for similar purposes, with focus on maneuvering at high speed. This article presents the subjective and objective evaluation of a motorcycle riding simulator specifically for low speed longitudinal and lateral maneuvering, between 0 and 10 ms–1. An experiment was conducted with and without platform motion, focusing on three maneuvers: acceleration from standstill, braking to standstill and turning at constant speed. Participants briefly evaluated the fidelity of the simulator after each maneuver and more extensively after each motion condition. Behavioral fidelity was evaluated using experimental data measured on an instrumented motorcycle. Overall, the results show that the participants could reproduce the selected maneuvers without falling or losing balance, reporting a sufficient level of simulator realism. In terms of subjective fidelity, platform motion had a positive effect on simulator presence, significantly increasing the feeling of being involved in the virtual environ0ment. In terms of behavioral fidelity, the comparison between the simulator and experimental results shows good agreement, with a limited positive influence of motion for the braking maneuver, which indicates that for this maneuver the use of motion is beneficial to reproduce the real-life experience and performance.

Keywords

  • Motorcycle
  • simulator
  • validation

Fingerprint

Dive into the research topics of 'Motorcycle simulator subjective and objective validation for low speed maneuvering'. Together they form a unique fingerprint.

Cite this