Abstract
This paper presents a novel approach to multi-agent reinforcement learning (RL) for linear systems with convex polytopic constraints. Existing work on RL has demonstrated the use of model predictive control (MPC) as a function approximator for the policy and value functions. The current paper is the first work to extend this idea to the multi-agent setting. We propose the use of a distributed MPC scheme as a function approximator, with a structure allowing for distributed learning and deployment. We then show that Q-learning updates can be performed distributively without introducing nonstationarity, by reconstructing a centralized learning update. The effectiveness of the approach is demonstrated on a numerical example.
Original language | English |
---|---|
Article number | 111803 |
Number of pages | 9 |
Journal | Automatica |
Volume | 167 |
DOIs | |
Publication status | Published - 2024 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- ADMM
- Distributed model predictive control
- Multi-agent reinforcement learning
- Networked systems