Multi-Objective Optimization of Individual Pitch Control for Blade Fatigue Load Reductions for a 15 MW Wind Turbine

Manuel Lara*, Francisco Vázquez, Jan Willem Van Wingerden, Sebastiaan Paul Mulders, Juan Garrido

*Corresponding author for this work

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

Abstract

In order to mitigate periodic blade loads in wind turbines, recent research has analyzed different Individual Pitch Control (IPC) approaches, which typically use the multi-blade coordinate (MBC) transformation. Some of these studies show that the introduction of an additional tuning parameter in the MBC, namely the azimuth offset, helps to decouple the nonrotating axes in the MBC transformation and enhances the IPC performance. However, these improvements have been studied without considering the increased control effort performed by the pitch signal, which is the main negative side effect of the IPC. This work addresses this trade-off between pitch signal effort and blade fatigue reduction for IPC applied to a wind turbine operating in the full load region. Here, two IPC schemes, with and without additional azimuth offset, are designed and applied to a 15 MW monopile offshore wind turbine simulated with OpenFAST software. The optimal tuning of the IPC parameters is performed by means of a multi-objective optimization solved by genetic algorithms. The optimization procedure minimizes two objective functions related to pitch signal effort and blade fatigue load. The resulting Pareto fronts show a range of optimal solutions for each IPC scheme. The selected optimal solution for IPC with azimuth offset compared to the optimal solution for IPC without offset achieves improvements of more than 10% in blade load reduction maintaining similar pitch signal effort.

Original languageEnglish
Title of host publicationProceedings of the European Control Conference, ECC 2024
PublisherIEEE
Pages669-674
Number of pages6
ISBN (Electronic)978-3-9071-4410-7
DOIs
Publication statusPublished - 2024
Event2024 European Control Conference, ECC 2024 - Stockholm, Sweden
Duration: 25 Jun 202428 Jun 2024

Conference

Conference2024 European Control Conference, ECC 2024
Country/TerritorySweden
CityStockholm
Period25/06/2428/06/24

Bibliographical note

Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Fingerprint

Dive into the research topics of 'Multi-Objective Optimization of Individual Pitch Control for Blade Fatigue Load Reductions for a 15 MW Wind Turbine'. Together they form a unique fingerprint.

Cite this