Multiobjective Calibration Framework for Pedestrian Simulation Models: A study on the Effect of Movement Base Cases, Metrics, and Density Levels

Research output: Contribution to journalArticleScientificpeer-review

4 Citations (Scopus)
124 Downloads (Pure)

Abstract

Ideally, a multitude of steps has to be taken before a commercial implementation of a pedestrian model is used in practice. Calibration, the main goal of which is to increase the accuracy of the predictions by determining the set of values for the model parameters that allows for the best replication of reality, has an important role in this process. Yet, up to recently, calibration has received relatively little attention within the field of pedestrian modelling. Most studies focus only on one specific movement base case and/or use a single metric. It is questionable how generally applicable a pedestrian simulation model is that has been calibrated using a limited set of movement base cases and one metric. The objective of this research is twofold, namely, to (1) determine the effect of the choice of movement base cases, metrics, and density levels on the calibration results and (2) to develop a multiple-objective calibration approach to determine the aforementioned effects. In this paper a multiple-objective calibration scheme is presented for pedestrian simulation models, in which multiple normalized metrics (i.e., flow, spatial distribution, effort, and travel time) are combined by means of weighted sum method that accounts for the stochastic nature of the model. Based on the analysis of the calibration results, it can be concluded that (1) it is necessary to use multiple movement base cases when calibrating a model to capture all relevant behaviours, (2) the level of density influences the calibration results, and (3) the choice of metric or combinations of metrics influence the results severely.
Original languageEnglish
Article number5874085
Number of pages18
JournalJournal of Advanced Transportation
Volume2019
DOIs
Publication statusPublished - 2019

Fingerprint Dive into the research topics of 'Multiobjective Calibration Framework for Pedestrian Simulation Models: A study on the Effect of Movement Base Cases, Metrics, and Density Levels'. Together they form a unique fingerprint.

Cite this