Multiplet supercurrent in Josephson tunneling circuits

André Melo*, Valla Fatemi, Anton R. Akhmerov

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

13 Citations (Scopus)
53 Downloads (Pure)

Abstract

The multi-terminal Josephson effect allows DC supercurrent to flow at finite commensurate voltages. Existing proposals to realize this effect rely on nonlocal Andreev processes in superconductor-normal-superconductor junctions. However, this approach requires precise control over microscopic states and is obscured by dissipative current. We show that standard tunnel Josephson circuits also support multiplet supercurrent mediated only by local tunneling processes. Furthermore, we observe that the supercurrents persist even in the high charging energy regime in which only sequential Cooper transfers are allowed. Finally, we demonstrate that the multiplet supercurrent in these circuits has a quantum geometric component that is distinguishable from the well-known adiabatic contribution.

Original languageEnglish
Article number017
Number of pages8
JournalSciPost Physics
Volume12
Issue number1
DOIs
Publication statusPublished - 2022

Fingerprint

Dive into the research topics of 'Multiplet supercurrent in Josephson tunneling circuits'. Together they form a unique fingerprint.

Cite this