Nanocellulose-Templated Porous Titania Scaffolds Incorporating Presynthesized Titania Nanocrystals

Alesja Ivanova, Maria C. Fravventura, Dina Fattakhova-Rohlfing, Jiri Rathouský, Liana Movsesyan, Pirmin Ganter, Tom J. Savenije, Thomas Bein

Research output: Contribution to journalArticleScientificpeer-review

18 Citations (Scopus)

Abstract

Nanocrystalline cellulose (NCC) is an abundant biogenic nanomaterial with unique properties that enables the efficient synthesis of mesoporous crystalline titania. We significantly enhance the photocatalytic activity of titania thin films by introducing solvothermally synthesized preformed anatase nanoparticles into a sol-gel based biotemplated titania scaffold. The resulting dual source titania thin films containing different amounts of preformed crystalline species were investigated by time-resolved microwave conductivity (TRMC) measurements and tested in the photocatalytic conversion of 4-chlorophenol. The gradual addition of preformed nanoparticles leads to a consistent increase of the mean size of titania crystalline domains, whereas the porosity of the composite is well-preserved due to the shape-persistent nature of the NCC template. Microwave conductivity studies establish increased photoconductivity of the films containing preformed anatase nanoparticles in comparison to that of films made without the nanoparticles. The synergistic features of the dual source titania, namely the improved crystalline properties brought by the preformed nanocrystals in combination with the high surface area provided by the NCC-templated sol-gel titania, result in a very high photocatalytic activity of the films in the photocatalytic decomposition of 4-chlorophenol. In quantitative terms, the dual source titania films prepared with 75% nanoparticles exhibit a first order degradation rate constant of 0.53 h-1 (1.47 × 10-4 sec-1), which strongly outperforms the activity of commercial P90 nanopowder showing a rate constant of 0.17 h-1 (0.47 × 10-4 sec-1) under the same conditions.

Original languageEnglish
Pages (from-to)6205-6212
Number of pages8
JournalChemistry of Materials
Volume27
Issue number18
DOIs
Publication statusPublished - 22 Sep 2015

Fingerprint

Dive into the research topics of 'Nanocellulose-Templated Porous Titania Scaffolds Incorporating Presynthesized Titania Nanocrystals'. Together they form a unique fingerprint.

Cite this