Natural fracture prediction: A multiscale integration of seismic data, image logs and numerical forward modelling

Q. Boersma, W. Athmer, M. Etchebes, J. Haukås, G. Bertotti

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

Abstract

Natural fracture networks are commonly observed in tight carbonate and chalk reservoirs and are believed to have significant impact on the effective permeability and potential fluid flow behavior. For instance, production from chalk fields in the North Sea is believed to be aided by the presence of natural fracture systems. Apart from enhancing production, fractures can also result in channelized fluid flow and early water break-through. In this study, we propose a multiscale and data-driven workflow of automated fault extraction, image log interpretation and both inverse and forward modelling, to characterize and quantify potential inter-well fracture network geometries and densities. The workflow is exemplified on the Ekofisk chalk field situated in the Norwegian North Sea. The seismic and well data show that the Ekofisk fault and fracture system forms a connected system, which can be subdivided into four main structural orientations. Inverse modeling suggests that the orientations of the fracture/fault system can be explained by three separate normal faulting events. By implementing the structural data into a forward simulation, we characterize the potential inter-well fracture/fault network highlighting that fractures occur in clustered zones which follow the four main observed orientations.

Original languageEnglish
Title of host publication81st EAGE Conference and Exhibition 2019
PublisherEAGE
Number of pages5
ISBN (Electronic)9789462822894
DOIs
Publication statusPublished - 2019
Event81st EAGE Conference and Exhibition 2019 - ExCeL Centre, London, United Kingdom
Duration: 3 Jun 20196 Jun 2019
https://eage.eventsair.com/81st-eage-annual-conference-and-exhibtion/

Conference

Conference81st EAGE Conference and Exhibition 2019
CountryUnited Kingdom
CityLondon
Period3/06/196/06/19
Internet address

Fingerprint Dive into the research topics of 'Natural fracture prediction: A multiscale integration of seismic data, image logs and numerical forward modelling'. Together they form a unique fingerprint.

Cite this