TY - JOUR
T1 - Natural Organic Matter Stabilizes Pristine Nanoplastics but Destabilizes Photochemical Weathered Nanoplastics in Monovalent Electrolyte Solutions
AU - Xu, Yanghui
AU - Wang, Xintu
AU - van der Hoek, Jan Peter
AU - Liu, Gang
AU - Lompe, Kim Maren
PY - 2025
Y1 - 2025
N2 - Photochemical weathering and eco-corona formation through natural organic matter (NOM) adsorption play vital roles in the aggregation tendencies of nanoplastics (NPs) in aquatic environments. However, it remains unclear how photochemical weathering alters the adsorption patterns of NOM and the conformation of the eco-corona, subsequently affecting the aggregation tendencies of NPs. This study examined the effect of Suwannee River NOM adsorption on the aggregation kinetics of pristine and photoaged polystyrene (PS) NPs in monovalent electrolyte solutions. The results showed that photochemical weathering influenced the conformation of the eco-corona, which, in turn, determined NP stability in the presence of NOM. Hydrophobic components of NOM predominantly bound to pristine NPs through hydrophobic and π-π interactions, and extended hydrophilic segments in water hindered NP aggregation via steric repulsion. Conversely, hydrogen bonding facilitated the binding of these hydrophilic segments to multiple photoaged NPs, thereby destabilizing them through polymer bridging. Additionally, the stabilization and destabilization capacities of NOM increased with its concentration and molecular weight. These findings shed light on the destabilizing role of NOM in weathered NPs, offering new perspectives on environmental colloidal chemistry and the fate of NPs in complex aquatic environments.
AB - Photochemical weathering and eco-corona formation through natural organic matter (NOM) adsorption play vital roles in the aggregation tendencies of nanoplastics (NPs) in aquatic environments. However, it remains unclear how photochemical weathering alters the adsorption patterns of NOM and the conformation of the eco-corona, subsequently affecting the aggregation tendencies of NPs. This study examined the effect of Suwannee River NOM adsorption on the aggregation kinetics of pristine and photoaged polystyrene (PS) NPs in monovalent electrolyte solutions. The results showed that photochemical weathering influenced the conformation of the eco-corona, which, in turn, determined NP stability in the presence of NOM. Hydrophobic components of NOM predominantly bound to pristine NPs through hydrophobic and π-π interactions, and extended hydrophilic segments in water hindered NP aggregation via steric repulsion. Conversely, hydrogen bonding facilitated the binding of these hydrophilic segments to multiple photoaged NPs, thereby destabilizing them through polymer bridging. Additionally, the stabilization and destabilization capacities of NOM increased with its concentration and molecular weight. These findings shed light on the destabilizing role of NOM in weathered NPs, offering new perspectives on environmental colloidal chemistry and the fate of NPs in complex aquatic environments.
KW - aggregation tendency
KW - nanoplastics
KW - natural organic matter
KW - photochemical weathering
KW - polymer bridging
KW - steric repulsion
UR - http://www.scopus.com/inward/record.url?scp=85216710320&partnerID=8YFLogxK
U2 - 10.1021/acs.est.4c11540
DO - 10.1021/acs.est.4c11540
M3 - Article
C2 - 39813155
AN - SCOPUS:85216710320
SN - 0013-936X
VL - 59
SP - 1822
EP - 1834
JO - Environmental Science and Technology
JF - Environmental Science and Technology
IS - 3
ER -