Abstract
Multi-objective reinforcement learning (MORL) is used to solve problems involving multiple objectives. An MORL agent must make decisions based on the diverse signals provided by distinct reward functions. Training an MORL agent yields a set of solutions (policies), each presenting distinct trade-offs among the objectives (expected returns). MORL enhances explainability by enabling fine-grained comparisons of policies in the solution set based on their trade-offs as opposed to having a single policy. However, the solution set is typically large and multi-dimensional, where each policy (e.g., a neural network) is represented by its objective values.
We propose an approach for clustering the solution set generated by MORL. By considering both policy behavior and objective values, our clustering method can reveal the relationship between policy behaviors and regions in the objective space. This approach can enable decision makers (DMs) to identify overarching trends and insights in the solution set rather than examining each policy individually. We tested our method in four multi-objective environments and found it outperformed traditional k-medoids clustering. Additionally, we include a case study that demonstrates its real-world application.
We propose an approach for clustering the solution set generated by MORL. By considering both policy behavior and objective values, our clustering method can reveal the relationship between policy behaviors and regions in the objective space. This approach can enable decision makers (DMs) to identify overarching trends and insights in the solution set rather than examining each policy individually. We tested our method in four multi-objective environments and found it outperformed traditional k-medoids clustering. Additionally, we include a case study that demonstrates its real-world application.
Original language | English |
---|---|
Title of host publication | 27th European Conference on Artificial Intelligence, 19–24 October 2024, Santiago de Compostela, Spain – Including 13th Conference on Prestigious Applications of Intelligent Systems (PAIS 2024) |
Editors | Ulle Endriss, Francisco S. Melo, Kerstin Bach, Alberto Bugarin-Diz, Jose M. Alonso-Moral, Senen Barro, Fredrik Heintz |
Publisher | IOS Press |
Pages | 2919-2926 |
Number of pages | 8 |
ISBN (Electronic) | 978-1-64368-548-9 |
DOIs | |
Publication status | Published - 2024 |
Event | 27th European Conference on Artificial Intelligence, ECAI 2024 - Santiago de Compostela, Spain Duration: 19 Oct 2024 → 24 Oct 2024 https://www.ecai2024.eu/ |
Publication series
Name | Frontiers in Artificial Intelligence and Applications |
---|---|
Publisher | IOS Press |
Volume | 392 |
ISSN (Print) | 0922-6389 |
ISSN (Electronic) | 1879-8314 |
Conference
Conference | 27th European Conference on Artificial Intelligence, ECAI 2024 |
---|---|
Country/Territory | Spain |
City | Santiago de Compostela |
Period | 19/10/24 → 24/10/24 |
Internet address |