Network Design and Impacts of Automated Driving: An Explorative Study

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

102 Downloads (Pure)

Abstract

This study explores a network configuration concept for vehicle automation levels 3-4 (according to SAE classifications) in an urban road network having mixed traffic and demonstrates its potential impacts. The authors assume automated driving will be allowed on a selection of roads. For the remaining roads, manual driving (although supported by assisting driving automation systems) will be compulsory. A static Multi-Class Stochastic User Equilibrium traffic assignment based on the Path-Size logit and a Monte Carlo-Labeling combination approach for route-set generation is adapted to model the behavioral differences of vehicles in mixed traffic. Two user-classes are distinguished: vehicles with automation levels 0-2 and vehicles with automation levels 3-4 having a different Passenger Car Unit to account for lower driving headways, lower Value of Time, and higher fuel efficiency. The results indicate a decrease in total travel cost with the increase in market penetration rate of higher automation levels, a decrease in total travel time, and a minor increase in total travel distance. Although in most cases vehicles with higher automation levels benefit more from the improvements, the rest of the vehicles do not suffer deterioration in their travel conditions in any scenario. Furthermore, a noticeable shift of traffic from roads with access function to roads with flow function and distributors is observed. Sensitivity analysis shows that the extent of changes in the impacts is not strongly dependent on the input parameters. Finally, a steady decline in total travel cost is observed with increase in market penetration rate of higher automation levels.
Original languageEnglish
Title of host publicationTransportation Research Board 97th Annual Meeting
Subtitle of host publication7-11 January, Washington DC, United States
PublisherTransportation Research Board (TRB)
Number of pages19
Publication statusPublished - 2018
EventTRB 2018: 97th Annual Meeting of the Transportation Research Board - Walter E. Washington Convention Center, Washington D.C., United States
Duration: 7 Jan 201811 Jan 2018
Conference number: 97

Conference

ConferenceTRB 2018: 97th Annual Meeting of the Transportation Research Board
Abbreviated titleTRB 2018
Country/TerritoryUnited States
CityWashington D.C.
Period7/01/1811/01/18

Bibliographical note

Accepted Author Manuscript

Fingerprint

Dive into the research topics of 'Network Design and Impacts of Automated Driving: An Explorative Study'. Together they form a unique fingerprint.

Cite this