Abstract
Ultrasound imaging is an attractive imaging modality due to its low-cost and real-time feedback, although it often falls short in image quality compared to MRI and CT imaging. Conventional ultrasound image reconstruction, such as Delay-and-Sum beamforming, is derived from maximum-likelihood estimation. As such, no prior information is exploited in the image formation process, which limits potential image quality. Maximum-a-posteriori (MAP) beamforming aims to overcome this issue, but often relies on rough approximations of the underlying signal statistics. Deep learning based reconstruction methods have demonstrated impressive results over the past years, but often lack interpretability and require vast amounts of data.In this work we present a neural MAP beamforming technique, which efficiently combines deep learning in the MAP beamforming framework. We show that this model-based deep learning approach can achieve high-quality imaging, improving over the state-of-the-art, without compromising the real-time abilities of ultrasound imaging.
Original language | English |
---|---|
Title of host publication | Proceedings of the ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) |
Place of Publication | Piscataway |
Publisher | IEEE |
Number of pages | 5 |
ISBN (Electronic) | 978-1-7281-6327-7 |
ISBN (Print) | 978-1-7281-6328-4 |
DOIs | |
Publication status | Published - 2023 |
Event | 48th IEEE International Conference on Acoustics, Speech and Signal Processing 2023 - Rhodes Island, Greece Duration: 4 Jun 2023 → 10 Jun 2023 |
Publication series
Name | ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
---|---|
Volume | 2023-June |
ISSN (Print) | 1520-6149 |
Conference
Conference | 48th IEEE International Conference on Acoustics, Speech and Signal Processing 2023 |
---|---|
Abbreviated title | ICASSP 2023 |
Country/Territory | Greece |
City | Rhodes Island |
Period | 4/06/23 → 10/06/23 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- Ultrasound
- Beamforming
- Deep-Learning
- Probabilistic modelling