Abstract
Estimating reliable projections of precipitation considering climate change scenarios is important for hydrological studies. General circulation models provide future climate simulations at large scale in terms of large-scale atmospheric variables (LSAVs). Those LSAVs can be downscaled to finer special resolution using several downscaling approaches. This paper presents a support vector regression (SVR)-based downscaling approach to downscale rainfall at several locations in a study area. Because the rainfall generation mechanisms cannot be the same for all the sites in a study area, conventional multisite downscaling approaches that assume the same rainfall generation mechanism should not be used. Therefore, a new downscaling approach is proposed that (1) divides the study area in several climatological regions, and (2) develops different downscaling models for each of the climatological regions to obtain future projections of rainfall. The new approach was implemented on rainfall data obtained for Republic of Ireland to demonstrate the effectiveness of the approach compared with existing approaches. Future projections of rainfall were obtained for the period 2012-2050 corresponding to four Representative Concentration Pathway climate change scenarios. The performance of the SVR approach was compared with that of relevance vector machine-and deep learning-based downscaling approaches.
Original language | English |
---|---|
Article number | 04020013 |
Number of pages | 16 |
Journal | Journal of Hydrologic Engineering |
Volume | 25 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2020 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- Future rainfall projections
- Global K-means
- Rainfall
- Statistical downscaling
- Support vector regression