Non-alloy Mg anode for Ni-MH batteries: Multiple approaches towards a stable cycling performance

Yaolin Xu, Fokko M. Mulder*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

9 Citations (Scopus)
40 Downloads (Pure)

Abstract

Mg attracts much research interest as anode material for Ni-MH batteries thanks to its lightweight, cost-effectiveness and high theoretical capacity (2200 mA h g−1). However, its practical application is tremendously challenged by the poor hydrogen sorption kinetics, passivation from aggressive aqueous electrolytes, and insulating nature of MgH2. Mg-based alloys exhibit enhanced hydrogen sorption kinetics and electrical conductivity, but significant amount of costly transition metal elements are required. In this work, we have, for the first time, utilized non-alloyed but catalyzed Mg as anode for Ni-MH batteries. 5 mol.% TiF3 was added to nanosized Mg for accelerating the hydrogen sorption kinetics. Several strategies for preventing the problematic passivation of Mg have been studied, including protective encapsulation of the electrode and utilizing room-temperature/high-temperature ionic liquids and an alkaline polymer membrane as working electrolyte. Promising electrochemical performance has been achieved in this Mg–TiF3 composite anode based Ni-MH batteries with room for further improvements.

Original languageEnglish
Pages (from-to)19542-19553
Number of pages12
JournalInternational Journal of Hydrogen Energy
Volume46
Issue number37
DOIs
Publication statusPublished - 2021

Keywords

  • Alkaline polymer membrane
  • Electrochemical hydrogen storage
  • Encapsulation
  • Ionic liquid
  • MgH
  • Ni-MH batteries

Fingerprint

Dive into the research topics of 'Non-alloy Mg anode for Ni-MH batteries: Multiple approaches towards a stable cycling performance'. Together they form a unique fingerprint.

Cite this