Nonlinear Incremental Control for Flexible Aircraft Trajectory Tracking and Load Alleviation

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

8 Downloads (Pure)

Abstract

This paper proposes a nonlinear control architecture for flexible aircraft simultaneous trajectory tracking and load alleviation. By exploiting the control redundancy, the gust and maneuver loads are alleviated without degrading the rigid-body command tracking performance. The proposed control architecture contains four cascaded control loops: position control, flight path control, attitude control, and optimal multi-objective wing control. Since the position kinematics are not influenced by model uncertainties, the nonlinear dynamic inversion control is applied. On the contrary, the flight path dynamics are perturbed by both model uncertainties and atmospheric disturbances; thus the incremental sliding mode control is adopted. Lyapunov-based analyses show that this method can simultaneously reduce the model dependency and the minimum possible gains of conventional sliding mode control methods. Moreover, the attitude dynamics are in the strict-feedback form; thus the incremental backstepping sliding mode control is applied. Furthermore, a novel load reference generator is designed to distinguish the necessary loads for performing maneuvers from the excessive loads. The load references are realized by the inner-loop optimal wing controller, while the excessive loads are naturalized by flaps without influencing the outer-loop tracking performance. The merits of the proposed control architecture are verified by trajectory tracking tasks and gust load alleviation tasks in spatial von K\'arm\'an turbulence fields.
Original languageEnglish
Title of host publicationAIAA Scitech 2021 Forum
Subtitle of host publication11–15 & 19–21 January 2021, Virtual Event
PublisherAmerican Institute of Aeronautics and Astronautics Inc. (AIAA)
Number of pages28
ISBN (Electronic)978-1-62410-609-5
DOIs
Publication statusPublished - 2021
EventAIAA Scitech 2021 Forum - Virtual/online event due to COVID-19
Duration: 11 Jan 202121 Jan 2021

Conference

ConferenceAIAA Scitech 2021 Forum
Period11/01/2121/01/21

Fingerprint Dive into the research topics of 'Nonlinear Incremental Control for Flexible Aircraft Trajectory Tracking and Load Alleviation'. Together they form a unique fingerprint.

Cite this