TY - JOUR
T1 - Nonlinear Semi-Analytical Model for Axial Flux Permanent-Magnet Machine
AU - Guo, Baocheng
AU - Du, Yunlu
AU - Djelloul KHEDDA, Zakarya
AU - Peng, Fei
AU - Dong, Jianning
AU - Huang, Yunkai
AU - Frederic, Dubas
AU - Boughrara, Kamel
PY - 2022
Y1 - 2022
N2 - This paper proposes a novel nonlinear semi-analytical model (AM) for the magnetic field calculation of electric machines. The nonlinear properties and local saturation effect of the iron part are taken into consideration in Cartesian coordinates, which is the main contribution of the proposed model. Thus, high accuracy of electro-magnetic field results can be obtained with the low computation time cost. The model is developed based on the harmonic modeling (HM) technique by solving Maxwells equations. The detailed theoretical derivations, which use the complex Fourier series and the Cauchy product, are presented. To verify the proposed model, an axial flux permanent-magnet (PM) machine (AFPMM) is selected to be investigated. Both finite-element model (FEM) and experiments results agree well with that of the proposed model. Moreover, the nonlinear AM has potential application for other types of PM electrical motor in Cartesian coordinates, like flat PM linear machines.
AB - This paper proposes a novel nonlinear semi-analytical model (AM) for the magnetic field calculation of electric machines. The nonlinear properties and local saturation effect of the iron part are taken into consideration in Cartesian coordinates, which is the main contribution of the proposed model. Thus, high accuracy of electro-magnetic field results can be obtained with the low computation time cost. The model is developed based on the harmonic modeling (HM) technique by solving Maxwells equations. The detailed theoretical derivations, which use the complex Fourier series and the Cauchy product, are presented. To verify the proposed model, an axial flux permanent-magnet (PM) machine (AFPMM) is selected to be investigated. Both finite-element model (FEM) and experiments results agree well with that of the proposed model. Moreover, the nonlinear AM has potential application for other types of PM electrical motor in Cartesian coordinates, like flat PM linear machines.
KW - Harmonic model
KW - Cartesian coordinate
KW - Axial flux permanent-magnet machine
KW - Saturation effect
UR - http://www.scopus.com/inward/record.url?scp=85127034337&partnerID=8YFLogxK
U2 - 10.1109/TIE.2022.3159952
DO - 10.1109/TIE.2022.3159952
M3 - Article
AN - SCOPUS:85127034337
JO - IEEE Transactions on Industrial Electronics
JF - IEEE Transactions on Industrial Electronics
SN - 0278-0046
M1 - 9739841
ER -