Abstract
We consider nonparametric estimation of the Lévy measure of a hidden Lévy process driving a stationary Omstein-Uhlenbeck process which is observed at discrete time points. This Lévy measure can be expressed in terms of the canonical function of the stationary distribution of the Omstein-Uhlenbeck process, which is known to be self-decomposable. We propose an estimator for this canonical function based on a preliminary estimator of the characteristic function of the stationary distribution. We provide a suppport-reduction algorithm for the numerical computation of the estimator, and show that the estimator is asymptotically consistent under various sampling schemes. We also define a simple consistent estimator of the intensity parameter of the process. Along the way, a nonparametric procedure for estimating a self-decomposable density function is constructed, and it is shown that the Oenstein-Uhlenbeck process is β-mixing. Some general results on uniform convergence of random characteristic functions are included.
| Original language | English |
|---|---|
| Pages (from-to) | 759-791 |
| Number of pages | 33 |
| Journal | Bernoulli |
| Volume | 11 |
| Issue number | 5 |
| DOIs | |
| Publication status | Published - 1 Oct 2005 |
| Externally published | Yes |
Keywords
- Lévy process
- Self-decomposability
- Support-reduction algorithm
- Uniform convergence of characteristic functions