Novel derivatives of 1,6,7,12-tetrachloroperylene-3,4,9,10-tetracarboxylic acid: Synthesis, electrochemical and optical properties

Rajeev K. Dubey*, Nick Westerveld, E.J.R. Sudholter, Ferdinand C. Grozema, Wolter F. Jager

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

34 Citations (Scopus)
104 Downloads (Pure)

Abstract

A family of novel unsymmetrical "peri"-substituted perylene-3,4,9,10-tetracarboxylic acid derivatives (5-10), with 1,6,7,12-tetrachloro-substituents at the bay-positions, has been synthesized. Subsequently, their redox and optical properties have been explored with the intent of unveiling opto-electronic characteristics of these newly synthesized compounds. To synthesize these new compounds, pure 1,6,7,12-tetrachloroperylene-3,4,9,10-tetracarboxylic tetra-n-butylester (4) has been employed as the precursor and the structural modifications have been carried out exclusively at the "peri" positions in an efficient manner. The two synthons prepared in this work, 1,6,7,12-tetrachloroperylene-3,4,9,10-tetracarboxylic di-n-butylester monoanhydride (5) and 1,6,7,12-tetrachloroperylene-3,4,9,10-tetracarboxylic monoimide monoanhydride (8), are extremely valuable and versatile starting materials as they possess free anhydride functionality at the "peri" position in addition to the 1,6,7,12-tetrachloro-bay-substituents. Finally, the conventional methodology for the synthesis of 1,6,7,12-tetraphenoxy-bay-functionalized perylene bisimides and perylene bisbenzimidazoles has been modified to make it faster and more convenient.

Original languageEnglish
Pages (from-to)1481-1492
Number of pages12
JournalOrganic Chemistry Frontiers
Volume3
Issue number11
DOIs
Publication statusPublished - 1 Nov 2016

Fingerprint

Dive into the research topics of 'Novel derivatives of 1,6,7,12-tetrachloroperylene-3,4,9,10-tetracarboxylic acid: Synthesis, electrochemical and optical properties'. Together they form a unique fingerprint.

Cite this