Novel semi-decentralised mobile system for the sanitization and dehydration of septic sludge: a pilot-scale evaluation in the Jordan Valley

Eva Kocbek*, Hector A. Garcia, Christine M. Hooijmans, Ivan Mijatović, Mohammad Al-Addous, Zakariya Dalala, Damir Brdjanovic

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

1 Citation (Scopus)
50 Downloads (Pure)


The provision of effective sanitation strategies has a significant impact on public health. However, the treatment of septic sludge still presents some challenges worldwide. Consequently, innovative technologies capable of an effective and efficient sludge treatment, mostly at a decentralized level, are in high demand to improve sanitation provision. To address this problem, this study evaluates a novel semi-decentralised mobile faecal sludge treatment system, the pilot-system for which consists of a combination of several individual processes including mechanical dewatering (MD), microwave (MW) drying, and membrane filtration (ultrafiltration [UF] and reverse osmosis [RO]). The system evaluation was carried out by treating raw, partially digested faecal sludge (FS) from septic tanks—hence, septic sludge (SS)—in the Jordan Valley, Jordan. The pilot-scale system exhibited an effective and flexible treatment performance for (i) sanitizing faecal sludge and related liquid streams (MW and UF); (ii) reducing the treated sludge mass (and sludge volume) (MD and MW); and (iii) producing a high-quality treated liquid stream ideal for water reclamation applications (UF and RO). The MD process removed approximately 99% of the initial SS water content. The MW drying system completely removed E. coli and dehydrated the dewatered sludge at low energy expenditures of 0.75 MJ kg−1 and 5.5 MJ kg−1, respectively. Such energy expenditures can be further reduced by approximately 40% by recovering energy in the condensate and burning the dried sludge, which can then be reused inland applications. The membrane filtration system (UF and RO) was able to produce high-quality treated water that is ideal for the water reuse applications that irrigation requires, as well as meeting the Jordanian standard 893/2006. In addition, the system can also be powered by renewable energy sources, such as photovoltaic energy. Therefore, this research demonstrates that the evaluated semi-decentralised mobile system is technically feasible for the in situ treatment of SS (sanitization and dehydration), while also being effective for simultaneously recovering valuable resources, such as energy, water, and nutrients.

Original languageEnglish
Pages (from-to)42016-42036
Number of pages21
JournalEnvironmental Science and Pollution Research
Issue number28
Publication statusPublished - 2021


  • Faecal sludge
  • Mechanical dewatering unit
  • Membrane separation technology
  • Microwave irradiation
  • Nutrients
  • Resource recovery
  • Reuse

Cite this