Nuclear factor erythroid 2–related factor 2 (Nrf2) deficiency causes age-dependent progression of female osteoporosis

Yusuke Kubo*, Rainer Beckmann, Helda Pahlavani, Mauricio Cruz Saldivar, Katharina Szymanski, Sander Leeflang, Mohammad Javad Mirzaali, Amir Abbas Zadpoor, Christoph Jan Wruck, Holger Jahr, More Authors

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

4 Citations (Scopus)
36 Downloads (Pure)

Abstract

Background: Nuclear factor erythroid 2–related factor 2 (Nrf2) is a crucial transcription factor for cellular redox homeostasis. The association of Nrf2 with elderly female osteoporotic has yet to be fully described. The aim was to elucidate a potential age-dependent Nrf2 contribution to female osteoporosis in mice. Methods: Eighteen female wild type (WT) and 16 Nrf2-knockout (KO) mice were sacrificed at different ages (12 weeks = young mature adult and 90 weeks = old) to analyze their femurs. The morphological properties (trabecular and cortical) were evaluated by micro-computed tomography (μCT) and compared to gold standard histochemistry analysis. The quasi-static compression tests were performed to calculate the mechanical properties of bones. Additionally, the population of bone resorbing cells and aromatase expression by osteocytes was immunohistochemically evaluated and empty osteocyte lacunae was counted in cortical bone. Results: Old Nrf2-KO mice revealed a significantly reduced trabecular bone mineral density (BMD), cortical thickness, cortical area, and bone fraction compared to old WT mice, regardless of no significant difference in skeletally mature young adult mice between WT and KO. Specifically, while all old WT mice showed thin metaphyseal trabeculae, trabecular bone was completely absent in 60% of old KO mice. Additionally, old KO mice showed significantly more osteoclast-like cells and fewer aromatase-positive osteocytes than WT mice, whereas the occurrence of empty osteocyte lacunae did not differ between both groups. Nrf2-KO mice further showed an age-dependently reduced fracture resilience compared to age-matched WT mice. Conclusion: Our results suggest that chronic Nrf2 loss can lead to age-dependent progression of female osteoporosis.

Original languageEnglish
Article number1015
Number of pages13
JournalBMC Musculoskeletal Disorders
Volume23
Issue number1
DOIs
Publication statusPublished - 2022

Keywords

  • Bone strength
  • Estrogen
  • Fracture resilience
  • Nrf2
  • Osteoporosis

Fingerprint

Dive into the research topics of 'Nuclear factor erythroid 2–related factor 2 (Nrf2) deficiency causes age-dependent progression of female osteoporosis'. Together they form a unique fingerprint.

Cite this