TY - GEN
T1 - Numerical Investigation of a Coupled Blow-Off/Flashback Process in a High-Pressure Lean-Burn Combustor
AU - Soli, Alessandro
AU - Langella, Ivan
PY - 2022
Y1 - 2022
N2 - Large eddy simulation is used to investigate the flashback mechanism caused by the combustion-induced vortex breakdown (CIVB) in a high-pressure lean-burn annular combustor with lean direct injection of kerosene. A single sector of the geometry, including a central pilot flame surrounded by a main flame, is simulated at take-off conditions. A previously-developed flamelet-based approach is used to model turbulence-combustion interactions due to its relatively low cost, allowing to simulate a sufficiently long time window. In stable operations, the flame stabilises in an M-shape configuration and a periodic movement of the pilot jet, with the corresponding formation of a small recirculation bubble, is observed. Flashback is then observed, with the flame accelerating upstream towards the injector as already described in other studies. This LES, however, reveals a precursor partial blow-out of the main flame induced by a cluster of vortices appearing in the outer recirculation region. The combined effect of vortices and sudden quenching alters the mixing level close to the injector, causing first the main, then the pilot flame, to accelerate upstream and initiate the CIVB cycle before the quenched region can re-ignite. Main and pilot flames partly extinguish as they cross their respective fuel injection point, and re-ignition follows due to the remnants of the reaction in the pilot stream. The process is investigated in detail, discussing the causes of CIVB-driven flashback in realistic lean-burn systems.
AB - Large eddy simulation is used to investigate the flashback mechanism caused by the combustion-induced vortex breakdown (CIVB) in a high-pressure lean-burn annular combustor with lean direct injection of kerosene. A single sector of the geometry, including a central pilot flame surrounded by a main flame, is simulated at take-off conditions. A previously-developed flamelet-based approach is used to model turbulence-combustion interactions due to its relatively low cost, allowing to simulate a sufficiently long time window. In stable operations, the flame stabilises in an M-shape configuration and a periodic movement of the pilot jet, with the corresponding formation of a small recirculation bubble, is observed. Flashback is then observed, with the flame accelerating upstream towards the injector as already described in other studies. This LES, however, reveals a precursor partial blow-out of the main flame induced by a cluster of vortices appearing in the outer recirculation region. The combined effect of vortices and sudden quenching alters the mixing level close to the injector, causing first the main, then the pilot flame, to accelerate upstream and initiate the CIVB cycle before the quenched region can re-ignite. Main and pilot flames partly extinguish as they cross their respective fuel injection point, and re-ignition follows due to the remnants of the reaction in the pilot stream. The process is investigated in detail, discussing the causes of CIVB-driven flashback in realistic lean-burn systems.
UR - http://www.scopus.com/inward/record.url?scp=85141376825&partnerID=8YFLogxK
U2 - 10.1115/GT2022-82163
DO - 10.1115/GT2022-82163
M3 - Conference contribution
AN - SCOPUS:85141376825
T3 - Proceedings of the ASME Turbo Expo
BT - Combustion, Fuels, and Emissions
PB - The American Society of Mechanical Engineers (ASME)
T2 - ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition, GT 2022
Y2 - 13 June 2022 through 17 June 2022
ER -