Abstract
We study certain q-deformed analogues of the maximal abelian subalgebras of the group von Neumann algebras of free groups. The radial subalgebra is defined for Hecke deformed von Neumann algebras of the Coxeter group (Z=2Z)k and shown to be a maximal abelian subalgebra which is singular and with Pukanszky invariant [∞]. Further all nonequal generator masas in the q-deformed Gaussian von Neumann algebras are shown to be mutually nonintertwinable.
Original language | English |
---|---|
Pages (from-to) | 1-21 |
Number of pages | 21 |
Journal | Pacific Journal of Mathematics |
Volume | 302 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2019 |
Keywords
- Hecke von neumann algebra
- Maximal abelian subalgebras
- Q-Gaussian algebras
- Singular masas