Abstract
In this paper, we provide a comprehensive definition and classification of various sources of uncertainty within the fields of structural dynamics, system identification, and structural health monitoring (SHM), with a primary focus on the latter. Utilizing the classical input-output system representation as a main contextual framework, we present a taxonomy of uncertainties, intended for consistent classification of uncertainties in SHM applications: (i) input uncertainty; (ii) model form uncertainty; (iii) model parameter/variable uncertainty; (iv) measurement uncertainty; and (v) inherent variability. We then critically review methods and algorithms that address these uncertainties in the context of key SHM tasks: system identification and model inference, model updating, accounting for environmental and operational variability (EOV), virtual sensing, damage identification, and prognostic health management. A benchmark shear frame model with hysteretic links is employed as a running example to illustrate the application of selected methods and algorithmic tools. Finally, we discuss open challenges and future research directions in uncertainty quantification for SHM.
Original language | English |
---|---|
Article number | 011108 |
Number of pages | 21 |
Journal | ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering |
Volume | 11 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2025 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- structural health monitoring
- uncertainty