On the in-situ detectability of Europa's water vapour plumes from a flyby mission

Hans L F Huybrighs*, Yoshifumi Futaana, Stanislav Barabash, Martin Wieser, Peter Wurz, Norbert Krupp, Karl Heinz Glassmeier, Bert Vermeersen

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

11 Citations (Scopus)
134 Downloads (Pure)

Abstract

We investigate the feasibility of detecting water molecules (H2O) and water ions (H2O+) from the Europa plumes from a flyby mission. A Monte Carlo particle tracing method is used to simulate the trajectories of neutral particles under the influence of Europa's gravity field and ionized particles under the influence of Jupiter's magnetic field and the convectional electric field. As an example mission case we investigate the detection of neutral and ionized molecules using the Particle Environment Package (PEP), which is part of the scientific payload of the future JUpiter ICy moon Explorer mission (JUICE). We consider plumes that have a mass flux that is three orders of magnitude lower than what has been inferred from recent Hubble observations (Roth et al., 2014a). We demonstrate that the in-situ detection of H2O and H2O+ from these low mass flux plumes is possible by the instruments with large margins with respect to background and instrument noise. The signal to noise ratio for neutrals is up to ∼5700 and ∼33 for ions. We also show that the geometry of the plume source, either a point source or 1000km-long crack, does not influence the density distributions, and thus, their detectability. Furthermore, we discuss how to separate the plume-originating H2O and H2O+ from exospheric H2O and H2O+. The separation depends strongly on knowledge of the density distribution of Europa's exosphere.

Original languageEnglish
Pages (from-to)270-280
JournalIcarus
Volume289
DOIs
Publication statusPublished - 2016

Fingerprint

Dive into the research topics of 'On the in-situ detectability of Europa's water vapour plumes from a flyby mission'. Together they form a unique fingerprint.

Cite this