On the influence of stator-rotor radial gap size on the fluid-dynamic performance of mini-orc supersonic turbines

Alessandro Cappiello, Matteo Majer, Raffaele Tuccillo, Matteo Pini*

*Corresponding author for this work

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

2 Downloads (Pure)

Abstract

Radial-Inflow Turbines are considered the most suited expanders for waste heat recovery via high-temperature mini-organic Rankine Cycle (ORC) turbogenerators thanks to high compactness, large expansion ratio handled by a single stage, and comparatively low weight. Reaching high efficiency in these machines is however a formidable challenge, as they are bounded to operate with expansion ratios exceeding 40. Although scarcely investigated in the published literature, the size of the stator-rotor radial gap is a key design parameter as it has a large influence on fluid-dynamic performance, manufacturing, and mechanical integrity. In addition, the working conditions of the turbine are such that the stator operates with highly supersonic flows in the non-ideal thermodynamic regime, making the flow pattern in stator-rotor radial gap, which can be regarded as an area-decreasing channel, very complex. Under these conditions, the radial gap size could impact the stage efficiency up to few percentage points. The paper presents a study aimed at investigating the impact of variable radial gap on the fluid-dynamic performance of radial-inflow turbines for high-temperature mini-ORC power systems. The reference turbine is a supersonic machine for laboratory experiments under realization at Delft University of Technology, referred to as ORCHID turbine. First, a theoretical analysis is carried out to identify the relevant non-dimensional parameters governing the flow physics in the gap. Then, the effect of the radial gap size on the fluid-dynamic performance of the ORCHID turbine is assessed by means of RANS and uRANS computations. The results show that the change in radial gap size leads to a redistribution of expansion ratio between vaned and vaneless part of stationary component via a substantial change of the stator trailing edge flow structures, which, in turn strongly affects stator loss and stage efficiency, leading to 8% points reduction.

Original languageEnglish
Title of host publicationTurbomachinery - Axial Flow Turbine Aerodynamics; Deposition, Erosion, Fouling, and Icing; Radial Turbomachinery Aerodynamics
PublisherThe American Society of Mechanical Engineers (ASME)
Number of pages15
ISBN (Electronic)9780791886106
DOIs
Publication statusPublished - 2022
EventASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition, GT 2022 - Rotterdam, Netherlands
Duration: 13 Jun 202217 Jun 2022

Publication series

NameProceedings of the ASME Turbo Expo
Volume10-B

Conference

ConferenceASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition, GT 2022
Country/TerritoryNetherlands
CityRotterdam
Period13/06/2217/06/22

Bibliographical note

Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Fingerprint

Dive into the research topics of 'On the influence of stator-rotor radial gap size on the fluid-dynamic performance of mini-orc supersonic turbines'. Together they form a unique fingerprint.

Cite this