On the relations between the bandgap, structure and composition of the M–Si–N (M = alkali, alkaline earth or rare-earth metal) nitridosilicates

Melvin ten Kate, Zhijun Zhang, Bert Hintzen

Research output: Contribution to journalArticleScientificpeer-review

15 Citations (Scopus)
43 Downloads (Pure)

Abstract

Relations between the bandgap and structural properties and composition of the M–Si–N nitridosilicates (M = alkali, alkaline earth or rare earth metal) have been obtained, using experimental data collected from literature; and qualitative models are presented to explain the observed trends. Compounds with a higher degree of condensation, i.e. a higher Si/N ratio, generally have longer M–N bonds and shorter Si–N bonds. The observations can be explained based on the effective charge of N, dependent on its coordination with Si (NSix). With increasing Si/N ratio the coordination number of N by Si increases, making the effective charge of the nitrogen atom less negative, resulting in a longer and less covalent M–N bond. This also shifts the N 2p levels down in energy, lowering the top of the valence band (mainly composed of N orbitals); while decreasing the Si–N distance shifts the bottom of the conduction band (mainly composed of Si and M orbitals) upward. Some nitridosilicates show deviations to the general trends, such as γ-Si3N4 and several Li-containing compounds. These deviations have been discussed and possible explanations have been given based on peculiarities in their structural characteristics.
Original languageEnglish
Pages (from-to)11504-11514
JournalJournal of Materials Chemistry C: materials for optical and electronic devices
Volume5
Issue number44
DOIs
Publication statusPublished - Oct 2017

Fingerprint

Dive into the research topics of 'On the relations between the bandgap, structure and composition of the M–Si–N (M = alkali, alkaline earth or rare-earth metal) nitridosilicates'. Together they form a unique fingerprint.

Cite this