Abstract
This paper develops a novel approach for online Lithium-ion (Li-ion) battery model identification and state of charge (SOC) estimation. To account for the SOC-dependent battery dynamics and the static nonlinearity between the open-circuit voltage (OCV) and SOC, we formulate a grey box nonlinear state-space model, in which elements depend on SOC in a polynomial way. For model identification, we propose an online concurrent state and parameter estimation by alternating the recursive least squares algorithm and particle filter; the SOC is computed via Coulomb counting during the modeling. The identified grey box model is then applied for SOC estimation using the particle filter. Simulation with real-world battery measurements demonstrates the effectiveness of the model structure and the estimation approach, which is reflected in accurate terminal voltage estimation and nonlinear OCV-SOC relation, and superior performance regarding SOC estimation compared to state-of-the-art approaches.
Original language | English |
---|---|
Pages (from-to) | 462-467 |
Number of pages | 6 |
Journal | IFAC-PapersOnline |
Volume | 58 |
Issue number | 15 |
DOIs | |
Publication status | Published - 2024 |
Event | 20th IFAC Symposium on System Identification, SYSID 2024 - Boston, United States Duration: 17 Jul 2024 → 19 Jul 2024 |
Keywords
- equivalent circuit model
- least squares
- Li-ion battery modeling
- nonlinear system identification
- particle filter
- SOC estimation