Abstract
Current spatiotemporal learning methods for complex data exploit the graph structure as an inductive bias to restrict the function space and improve data and computation efficiency. However, these methods work principally on graphs with a fixed size, whereas in several applications there are expanding graphs where new nodes join the network; e.g., new sensors joining a sensor network or new users joining a recommender system. This paper focuses on the non-trivial extension of spatiotemporal methods to this setting, where now it is key to jointly capture both the topological and signal dynamics. Specifically, it considers a graph vector autoregressive (GVAR) model for multivariate time series. The GVAR is a multivariate linear model that leverages a bank of graph filters allowing scalability and data efficiency. To account for the dynamic nature of the graphs, the filters’s parameters are learned on-the-fly via adaptive gradient descent with provable sub-linear regret. Numerical results on both synthetic and real data corroborate the proposed method.
Original language | English |
---|---|
Title of host publication | Proceedings of the ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) |
Place of Publication | Piscataway |
Publisher | IEEE |
Number of pages | 5 |
ISBN (Electronic) | 978-1-7281-6327-7 |
ISBN (Print) | 978-1-7281-6328-4 |
DOIs | |
Publication status | Published - 2023 |
Event | 48th IEEE International Conference on Acoustics, Speech and Signal Processing 2023 - Rhodes Island, Greece Duration: 4 Jun 2023 → 10 Jun 2023 |
Publication series
Name | ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
---|---|
Publisher | Institute of Electrical and Electronics Engineers (IEEE) |
ISSN (Print) | 1520-6149 |
Conference
Conference | 48th IEEE International Conference on Acoustics, Speech and Signal Processing 2023 |
---|---|
Abbreviated title | ICASSP 2023 |
Country/Territory | Greece |
City | Rhodes Island |
Period | 4/06/23 → 10/06/23 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.