TY - JOUR
T1 - Optimal energy management for hybrid-electric aircraft
AU - Pinto Leite, José Pedro Soares
AU - Voskuijl, Mark
PY - 2020
Y1 - 2020
N2 - Purpose: In recent years, increased awareness on global warming effects led to a renewed interest in all kinds of green technologies. Among them, some attention has been devoted to hybrid-electric aircraft – aircraft where the propulsion system contains power systems driven by electricity and power systems driven by hydrocarbon-based fuel. Examples of these systems include electric motors and gas turbines, respectively. Despite the fact that several research groups have tried to design such aircraft, in a way, it can actually save fuel with respect to conventional designs, the results hardly approach the required fuel savings to justify a new design. One possible path to improve these designs is to optimize the onboard energy management, in other words, when to use fuel and when to use stored electricity during a mission. The purpose of this paper is to address the topic of energy management applied to hybrid-electric aircraft, including its relevance for the conceptual design of aircraft and present a practical example of optimal energy management. Design/methodology/approach: To address this problem the dynamic programming (DP) method for optimal control problems was used and, together with an aircraft performance model, an optimal energy management was obtained for a given aircraft flying a given trajectory. Findings: The results show how the energy onboard a hybrid fuel-battery aircraft can be optimally managed during the mission. The optimal results were compared with non-optimal result, and small differences were found. A large sensitivity of the results to the battery charging efficiency was also found. Originality/value: The novelty of this work comes from the application of DP for energy management to a variable weight system which includes energy recovery via a propeller.
AB - Purpose: In recent years, increased awareness on global warming effects led to a renewed interest in all kinds of green technologies. Among them, some attention has been devoted to hybrid-electric aircraft – aircraft where the propulsion system contains power systems driven by electricity and power systems driven by hydrocarbon-based fuel. Examples of these systems include electric motors and gas turbines, respectively. Despite the fact that several research groups have tried to design such aircraft, in a way, it can actually save fuel with respect to conventional designs, the results hardly approach the required fuel savings to justify a new design. One possible path to improve these designs is to optimize the onboard energy management, in other words, when to use fuel and when to use stored electricity during a mission. The purpose of this paper is to address the topic of energy management applied to hybrid-electric aircraft, including its relevance for the conceptual design of aircraft and present a practical example of optimal energy management. Design/methodology/approach: To address this problem the dynamic programming (DP) method for optimal control problems was used and, together with an aircraft performance model, an optimal energy management was obtained for a given aircraft flying a given trajectory. Findings: The results show how the energy onboard a hybrid fuel-battery aircraft can be optimally managed during the mission. The optimal results were compared with non-optimal result, and small differences were found. A large sensitivity of the results to the battery charging efficiency was also found. Originality/value: The novelty of this work comes from the application of DP for energy management to a variable weight system which includes energy recovery via a propeller.
KW - Dynamic programming
KW - Flight performance
KW - Hybrid aircraft
KW - Optimal control
KW - Optimal energy management
UR - http://www.scopus.com/inward/record.url?scp=85085137411&partnerID=8YFLogxK
U2 - 10.1108/AEAT-03-2019-0046
DO - 10.1108/AEAT-03-2019-0046
M3 - Article
AN - SCOPUS:85085137411
VL - 92
SP - 851
EP - 861
JO - Aircraft Engineering and Aerospace Technology: an international journal
JF - Aircraft Engineering and Aerospace Technology: an international journal
SN - 1748-8842
IS - 6
ER -