Abstract
In this article, we estimate the mean-variance portfolio in the high-dimensional case using the recent results from the theory of random matrices. We construct a linear shrinkage estimator which is distribution-free and is optimal in the sense of maximizing with probability one the asymptotic out-of-sample expected utility, that is, mean-variance objective function for different values of risk aversion coefficient which in particular leads to the maximization of the out-of-sample expected utility and to the minimization of the out-of-sample variance. One of the main features of our estimator is the inclusion of the estimation risk related to the sample mean vector into the high-dimensional portfolio optimization. The asymptotic properties of the new estimator are investigated when the number of assets p and the sample size n tend simultaneously to infinity such that p/n→c∈(0,+∞). The results are obtained under weak assumptions imposed on the distribution of the asset returns, namely the existence of the 4+ε moments is only required. Thereafter we perform numerical and empirical studies where the small- and large-sample behavior of the derived estimator is investigated. The suggested estimator shows significant improvements over the existent approaches including the nonlinear shrinkage estimator and the three-fund portfolio rule, especially when the portfolio dimension is larger than the sample size. Moreover, it is robust to deviations from normality.
Original language | English |
---|---|
Pages (from-to) | 140-156 |
Number of pages | 17 |
Journal | Journal of Business and Economic Statistics |
Volume | 41 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2021 |
Keywords
- Covariance matrix estimation
- Expected utility portfolio
- Large-dimensional asymptotics
- Random matrix theory