Optimization and Comparison of Superconducting Generator Topologies for a 10 MW Wind Turbine Applications

Dong Liu, Henk Polinder, Asger Bech Abrahamsen, Ewoud Stehouwer, Ben Hendriks, Niklas Magnusson

Research output: Contribution to journalArticleScientificpeer-review

6 Citations (Scopus)


A direct-drive superconducting generator (DDSCG) is proposed for 10 MW wind turbines in the INNWIND.EU project. To fit the generator into the ``king-pin'' conceptual nacelle design, the generator structure with inner stationary superconducting (SC) field winding and outer rotating copper armature winding is investigated in the first research phase. Since the cost is an important performance indicator for this application, this paper presents a method to minimize the active material cost of the ``king-pin'' fitted DDSCG. In this method a relatively fast optimization program is developed with 2D non-linear finite element models. By implementing this method, three typical superconducting generator topologies are compared in terms of the active material cost and mass, the synchronous reactance and the phase resistance. The optimization method and the comparison results provide the DDSCG designers with a guideline for selecting a suitable machine topology.
Original languageEnglish
Pages (from-to)S191-S202
Number of pages12
JournalInternational Journal of Applied Electromagnetics and Mechanics
Issue numberS2
Publication statusPublished - 2017


  • Comparison
  • MgB2
  • optimization
  • superconducting generator
  • topology
  • wind turbine

Fingerprint Dive into the research topics of 'Optimization and Comparison of Superconducting Generator Topologies for a 10 MW Wind Turbine Applications'. Together they form a unique fingerprint.

Cite this