TY - JOUR
T1 - Optimization with genetic algorithms of individual pitch control design with and without azimuth offset for wind turbines in the full load region
AU - Lara, Manuel
AU - Garrido, Juan
AU - van Wingerden, Jan Willem
AU - Mulders, Sebastian Paul
AU - Vázquez, Francisco
PY - 2023
Y1 - 2023
N2 - The reduction of fatigue loadings in wind turbines to increase their lifetime has become of special interest from a control viewpoint. Individual Pitch Control (IPC) is a well-known approach used to mainly mitigate periodic blade loads, and it is usually implemented with the assistance of the multi-blade coordinate (MBC) transformation, which transforms and decouples the measured blade load signals from a rotating frame into a non-rotating tilt-axis and yaw-axis. Nevertheless, these axes still show coupling between them in practical scenarios adversely affecting the system performance. Previous studies have demonstrated the benefits of including an extra tuning parameter in the MBC, the azimuth offset, in improving the performance achieved by the IPC. However, the tuning of this parameter and its real improvements that can be obtained compared to the IPC without this offset require more research. Here, two 1P+2P IPC, with and without additional azimuth offset, are designed and applied to the 5 MW reference turbine model developed by NREL using the FAST software as a simulation platform. The controller parameter tuning is formulated as an optimization problem that minimizes the blade fatigue load according to the Dirlik index and that is resolved through genetic algorithms. To fairly analyze the improvement entailed by the addition of the azimuth offset, both optimized IPC schemes, with and without azimuth offset, are compared qualitatively and quantitatively using a classical controller as the baseline case. From the simulation results, it can be stated that the optimal IPC scheme with azimuth offset compared with the IPC scheme without offset achieves improvements of around 11% in load reduction and pitch signal effort.
AB - The reduction of fatigue loadings in wind turbines to increase their lifetime has become of special interest from a control viewpoint. Individual Pitch Control (IPC) is a well-known approach used to mainly mitigate periodic blade loads, and it is usually implemented with the assistance of the multi-blade coordinate (MBC) transformation, which transforms and decouples the measured blade load signals from a rotating frame into a non-rotating tilt-axis and yaw-axis. Nevertheless, these axes still show coupling between them in practical scenarios adversely affecting the system performance. Previous studies have demonstrated the benefits of including an extra tuning parameter in the MBC, the azimuth offset, in improving the performance achieved by the IPC. However, the tuning of this parameter and its real improvements that can be obtained compared to the IPC without this offset require more research. Here, two 1P+2P IPC, with and without additional azimuth offset, are designed and applied to the 5 MW reference turbine model developed by NREL using the FAST software as a simulation platform. The controller parameter tuning is formulated as an optimization problem that minimizes the blade fatigue load according to the Dirlik index and that is resolved through genetic algorithms. To fairly analyze the improvement entailed by the addition of the azimuth offset, both optimized IPC schemes, with and without azimuth offset, are compared qualitatively and quantitatively using a classical controller as the baseline case. From the simulation results, it can be stated that the optimal IPC scheme with azimuth offset compared with the IPC scheme without offset achieves improvements of around 11% in load reduction and pitch signal effort.
KW - control of renewable energy resources
KW - Control system design
KW - genetic algorithms
KW - individual pitch control
KW - wind turbine control
UR - http://www.scopus.com/inward/record.url?scp=85184960571&partnerID=8YFLogxK
U2 - 10.1016/j.ifacol.2023.10.1591
DO - 10.1016/j.ifacol.2023.10.1591
M3 - Conference article
AN - SCOPUS:85184960571
SN - 2405-8963
VL - 56
SP - 342
EP - 347
JO - IFAC-PapersOnLine
JF - IFAC-PapersOnLine
IS - 2
T2 - 22nd IFAC World Congress
Y2 - 9 July 2023 through 14 July 2023
ER -