Optimized ChIP-seq method facilitates transcription factor profiling in human tumors

Abhishek A. Singh, Karianne Schuurman, Ekaterina Nevedomskaya, Suzan Stelloo, Simon Linder, Marjolein Droog, Yongsoo Kim, Joyce Sanders, Henk van der Poel, Andries M. Bergman, Lodewyk F.A. Wessels, Wilbert Zwart*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

22 Citations (Scopus)
109 Downloads (Pure)

Abstract

Chromatin immunoprecipitation (ChIP)-seq analyses of transcription factors in clinical specimens are challenging due to the technical limitations and low quantities of starting material, often resulting in low enrichments and poor signal-to-noise ratio. Here, we present an optimized protocol for transcription factor ChIP-seq analyses in human tissue, yielding an ~100% success rate for all transcription factors analyzed. As proof of concept and to illustrate general applicability of the approach, human tissue from the breast, prostate, and endometrial cancers were analyzed. In addition to standard formaldehyde fixation, disuccinimidyl glutarate was included in the procedure, greatly increasing data quality. To illustrate the sensitivity of the optimized protocol, we provide high-quality ChIP-seq data for three independent factors (AR, FOXA1, and H3K27ac) from a single core needle prostate cancer biopsy specimen. In summary, double-cross-linking strongly improved transcription factor ChIP-seq quality on human tumor samples, further facilitating and enhancing translational research on limited amounts of tissue.

Original languageEnglish
Article numbere201800115
Pages (from-to)1-12
Number of pages12
JournalLife Science Alliance
Volume2
Issue number1
DOIs
Publication statusPublished - 2019

Fingerprint

Dive into the research topics of 'Optimized ChIP-seq method facilitates transcription factor profiling in human tumors'. Together they form a unique fingerprint.

Cite this