Parameterization of element balance formulation in reactive compositional flow and transport

Keshav Kala, Denis Voskov

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

11 Downloads (Pure)


We present a novel nonlinear formulation for modeling reactive-compositional transport in the presence of complex phase behavior related to dissolution and precipitation in multi-phase systems. This formulation is based on the consistent element balance reduction of the molar (overall composition) formulation. To predict a complex phase behavior in such systems, we include the chemical equilibrium constraints to the multiphase multicomponent negative flash calculations and solve the thermodynamic and chemical phase equilibrium simultaneously. In this solution, the phase equilibrium is represented by the partition coefficients whereas the chemical equilibrium reaction is represented by the activity coefficients model. This provides a generic treatment of chemical and thermodynamic equilibrium within an EOS SSI loop by modification of the multiphase flash to accommodate chemical equilibrium. Using the Equilibrium Rate Annihilation matrix allows us to reduce the governing unknowns to the primary set only while the coupling between chemical and thermodynamic equilibrium is captured by a simultaneous solution of modified multiphase flash equations. An input in this thermodynamic computation is an element composition of the mixture when an output contains fractions of components in each phase, including solids. This element balance molar formulation along with the modified formulation for multiphase flash has been tested in a simple transport model with dissolution and precipitation reactions. The same approach will be later used to model a system involving kinetic reactions. The simulation of more general practical models is performed using the recently developed Operator-Based Linearization (OBL) technique. In the modified version of the OBL, the nonlinear element based governing equations are formulated in terms of space and state-dependent parameters constrained by the solution of the extended multiphase flash based on molar element compositions. This approach helps us to add equilibrium reaction capabilities to the computationally efficient OBL technique.

Original languageEnglish
Title of host publication16th European Conference on the Mathematics of Oil Recovery
EditorsD. Gunasekera
Number of pages19
ISBN (Print)9789462822603
Publication statusPublished - 2018
Event16th European Conference on the Mathematics of Oil Recovery, ECMOR 2018: 3–6 September 2018, Barcelona, Spain - Barcelona, Spain
Duration: 3 Sep 20186 Sep 2018
Conference number: 16


Conference16th European Conference on the Mathematics of Oil Recovery, ECMOR 2018
Abbreviated titleECMOR 2018
Internet address

Fingerprint Dive into the research topics of 'Parameterization of element balance formulation in reactive compositional flow and transport'. Together they form a unique fingerprint.

Cite this