Abstract
Pedestrian detection remains a critical problem in various domains, such as computer vision, surveillance, and autonomous driving. In particular, accurate and instant detection of pedestrians in low-light conditions and reduced visibility is of utmost importance for autonomous vehicles to prevent accidents and save lives. This paper aims to comprehensively survey various pedestrian detection approaches, baselines, and datasets that specifically target low-light conditions. The survey discusses the challenges faced in detecting pedestrians at night and explores state-of-the-art methodologies proposed in recent years to address this issue. These methodologies encompass a diverse range, including deep learning-based, feature-based, and hybrid approaches, which have shown promising results in enhancing pedestrian detection performance under challenging lighting conditions. Furthermore, the paper highlights current research directions in the field and identifies potential solutions that merit further investigation by researchers. By thoroughly examining pedestrian detection techniques in low-light conditions, this survey seeks to contribute to the advancement of safer and more reliable autonomous driving systems and other applications related to pedestrian safety. Accordingly, most of the current approaches in the field use deep learning-based image fusion methodologies (i.e., early, halfway, and late fusion) for accurate and reliable pedestrian detection. Moreover, the majority of the works in the field (approximately 48%) have been evaluated on the KAIST dataset, while the real-world video feeds recorded by authors have been used in less than 6 % of the works.
Original language | English |
---|---|
Article number | 105106 |
Number of pages | 22 |
Journal | Image and Vision Computing |
Volume | 148 |
DOIs | |
Publication status | Published - 2024 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- Pedestrian detection
- Object detection
- Computer vision
- Autonomous vehicles