TY - JOUR
T1 - Performance evaluation of the AiDx multi-diagnostic automated microscope for the detection of schistosomiasis in Abuja, Nigeria
AU - Makau-Barasa, Louise
AU - Assefa, Liya
AU - Solomon, Jacob
AU - A-Enegela, Juliana
AU - Damen, James G.
AU - Popoola, Samuel
AU - Diehl, Jan‑Carel
AU - Vdovin, Gleb
AU - Agbana, Temitope
AU - More Authors, null
PY - 2023
Y1 - 2023
N2 - In this research, we report on the performance of automated optical digital detection and quantification of Schistosoma haematobium provided by AiDx NTDx multi-diagnostic Assist microscope. Our study was community-based, and a convenient sampling method was used in 17 communities in Abuja Nigeria, based on the disease prevalence information extracted from the baseline database on schistosomiasis, NTD Division, of the Federal Ministry of Health. At baseline, samples from 869 participants were evaluated of which 358 (34.1%) tested S. haematobium positive by the reference diagnostic standard. Registered images from the fully automated (autofocusing, scanning, image registration and processing, AI image analysis and automatic parasite count) AiDx assist microscope were analyzed. The Semi automated (autofocusing, scanning, image registration & processing and manual parasite count) and the fully automated AiDx Assist showed comparable sensitivities and specificities of [90.3%, 98%] and [89%, 99%] respectively. Overall, estimated egg counts of the semi-automated & fully automated AiDx Assist correlated significantly with the egg counts of conventional microscopy (r = 0.93, p ≤ 0.001 and r = 0.89, p ≤ 0.001 respectively). The AiDx Assist device performance is consistent with requirement of the World Health Organization diagnostic target product profile for monitoring, evaluation, and surveillance of Schistosomiasis elimination Programs.
AB - In this research, we report on the performance of automated optical digital detection and quantification of Schistosoma haematobium provided by AiDx NTDx multi-diagnostic Assist microscope. Our study was community-based, and a convenient sampling method was used in 17 communities in Abuja Nigeria, based on the disease prevalence information extracted from the baseline database on schistosomiasis, NTD Division, of the Federal Ministry of Health. At baseline, samples from 869 participants were evaluated of which 358 (34.1%) tested S. haematobium positive by the reference diagnostic standard. Registered images from the fully automated (autofocusing, scanning, image registration and processing, AI image analysis and automatic parasite count) AiDx assist microscope were analyzed. The Semi automated (autofocusing, scanning, image registration & processing and manual parasite count) and the fully automated AiDx Assist showed comparable sensitivities and specificities of [90.3%, 98%] and [89%, 99%] respectively. Overall, estimated egg counts of the semi-automated & fully automated AiDx Assist correlated significantly with the egg counts of conventional microscopy (r = 0.93, p ≤ 0.001 and r = 0.89, p ≤ 0.001 respectively). The AiDx Assist device performance is consistent with requirement of the World Health Organization diagnostic target product profile for monitoring, evaluation, and surveillance of Schistosomiasis elimination Programs.
U2 - 10.1038/s41598-023-42049-6
DO - 10.1038/s41598-023-42049-6
M3 - Article
SN - 2045-2322
VL - 13
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 14833
ER -