Performance Evaluation of the Schistoscope 5.0 for (Semi-)automated Digital Detection and Quantification of Schistosoma haematobium Eggs in Urine: A Field-based Study in Nigeria

Brice Meulah*, P.O. Oyibo, M.L. Bengtson, T.E. Agbana, Roméo Aimé Laclong Lontchi, Ayola Akim Adegnika, Wellington Oyibo Andi, C.H. Hokke, J.C. Diehl, Lisette van Lieshout

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

9 Citations (Scopus)
115 Downloads (Pure)

Abstract

Conventional microscopy is the standard procedure for the diagnosis of schistosomiasis, despite its limited sensitivity, reliance on skilled personnel, and the fact that it is error prone. Here, we report the performance of the innovative (semi-)automated Schistoscope 5.0 for optical digital detection and quantification of Schistosoma haematobium eggs in urine, using conventional microscopy as the reference standard. At baseline, 487 participants in a rural setting in Nigeria were assessed, of which 166 (34.1%) tested S. haematobium positive by conventional microscopy. Captured images from the Schistoscope 5.0 were analyzed manually (semiautomation) and by an artificial intelligence (AI) algorithm (full automation). Semi- and fully automated digital microscopy showed comparable sensitivities of 80.1% (95% confidence interval [CI]: 73.2-86.0) and 87.3% (95%CI: 81.3-92.0), but a significant difference in specificity of 95.3% (95% CI: 92.4-97.4) and 48.9% (95% CI: 43.3-55.0), respectively. Overall, estimated egg counts of semi- and fully automated digital microscopy correlated significantly with the egg counts of conventional microscopy (r50.90 and r50.80, respectively, P < 0.001), although the fully automated procedure generally underestimated the higher egg counts. In 38 egg positive cases, an additional urine sample was examined 10 days after praziquantel treatment, showing a similar cure rate and egg reduction rate when comparing conventional microscopy with semiautomated digital microscopy. In this first extensive field evaluation, we found the semiautomated Schistoscope 5.0 to be a promising tool for the detection and monitoring of S. haematobium infection, although further improvement of the AI algorithm for full automation is required.

Original languageEnglish
Pages (from-to)1047-1054
JournalAmerican Journal of Tropical Medicine and Hygiene
Volume107
Issue number5
DOIs
Publication statusPublished - 2022

Fingerprint

Dive into the research topics of 'Performance Evaluation of the Schistoscope 5.0 for (Semi-)automated Digital Detection and Quantification of Schistosoma haematobium Eggs in Urine: A Field-based Study in Nigeria'. Together they form a unique fingerprint.

Cite this