Periodic Load Rejection for Floating Offshore Wind Turbines via Constrained Subspace Predictive Repetitive Control *

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

1 Citation (Scopus)
42 Downloads (Pure)

Abstract

Individual Pitch Control (IPC) is an effective control strategy to mitigate the blade loads on large-scale wind turbines. Since IPC usually requires high pitch actuation, the safety constraints of the pitch actuator should be taken into account when designing the controller. This paper introduces a constrained Subspace Predictive Repetitive Control (SPRC) approach, which considers the limitation of blade pitch angle and pitch rate. To fulfill this goal, a model predictive control scheme is implemented in the fully data-driven SPRC approach to incorporate the physical limitations of the pitch actuator in the control problem formulation. An optimal control law subjected to constraints is then formulated so that future constraint violations are anticipated and prevented. Case studies show that the developed constrained SPRC reduces the pitch activities necessary to mitigate the blade loads when experiencing wind turbulence and abrupt wind gusts. More importantly, the approach allows the wind farm operator to design conservative bounds for the pitch actuator constraints that satisfies safety limitations, design specifications and physical restrictions. This will help to alleviate the cyclic fatigue loads on the actuators, increase the structural reliability and extend the lifespan of the pitch control system.

Original languageEnglish
Title of host publicationProceedings of the American Control Conference, ACC 2021
Place of PublicationPiscataway, NJ, USA
PublisherIEEE
Pages539-544
ISBN (Electronic)978-1-6654-4197-1
DOIs
Publication statusPublished - 2021
Event2021 American Control Conference, ACC 2021 - Virtual, New Orleans, United States
Duration: 25 May 202128 May 2021

Conference

Conference2021 American Control Conference, ACC 2021
Country/TerritoryUnited States
CityVirtual, New Orleans
Period25/05/2128/05/21

Bibliographical note

Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Fingerprint

Dive into the research topics of 'Periodic Load Rejection for Floating Offshore Wind Turbines via Constrained Subspace Predictive Repetitive Control *'. Together they form a unique fingerprint.

Cite this