pH-Controlled Coacervate-Membrane Interactions within Liposomes

Mart G.F. Last, Siddharth Deshpande, Cees Dekker

Research output: Contribution to journalArticleScientificpeer-review

85 Citations (Scopus)
128 Downloads (Pure)

Abstract

Membraneless organelles formed by liquid-liquid phase separation are dynamic structures that are employed by cells to spatiotemporally regulate their interior. Indeed, complex coacervation-based phase separation is involved in a multitude of biological tasks ranging from photosynthesis to cell division to chromatin organization, and more. Here, we use an on-chip microfluidic method to control and study the formation of membraneless organelles within liposomes, using pH as the main control parameter. We show that a transmembrane proton flux that is created by a stepwise change in the external pH can readily bring about the coacervation of encapsulated components in a controlled manner. We employ this strategy to induce and study electrostatic as well as hydrophobic interactions between the coacervate and the lipid membrane. Electrostatic interactions using charged lipids efficiently recruit coacervates to the membrane and restrict their movement along the inner leaflet. Hydrophobic interactions via cholesterol-tagged RNA molecules provide even stronger interactions, causing coacervates to wet the membrane and affect the local lipid-membrane structure, reminiscent of coacervate-membrane interactions in cells. The presented technique of pH-triggered coacervation within cell-sized liposomes may find applications in synthetic cells and in studying biologically relevant phase separation reactions in a bottom-up manner.

Original languageEnglish
Pages (from-to)4487-4498
Number of pages12
JournalACS Nano
Volume14
Issue number4
DOIs
Publication statusPublished - 2020

Keywords

  • coacervates
  • liposomes
  • liquid−liquid phase separation
  • membranes
  • microfluidics

Fingerprint

Dive into the research topics of 'pH-Controlled Coacervate-Membrane Interactions within Liposomes'. Together they form a unique fingerprint.

Cite this