Abstract
Bacteria encode diverse anti-phage systems, such as CRISPR-Cas and restriction modification (RM), which limit infection by targeting phage DNA. We identified a DNA modification in phages, i.e., 5-arabinosyl-hydroxy-cytosine (5ara-hC), which adds arabinose to cytosines via a hydroxy linkage and protects phage from DNA targeting. The hydroxy linkage was common among arabinoslyated phages, with some arabinosylated phages encoding arabinose-5ara-hC transferases (Aat) that add a second or third arabinose to DNA. DNA arabinosylation enables evasion from DNA-targeting type I CRISPR-Cas and type II RM systems. However, arabinosylated phages remain sensitive to RNA-targeting CRISPR-Cas (type III and VI) and promiscuous type IV restriction endonucleases. 5ara-hC enables evasion of glycosylase defenses that target phages with glucosylated hydroxymethyl cytosines, and 5ara-ara-hC protects against some defenses capable of targeting 5ara-hC-modified phages. Collectively, this work identifies DNA modifications that enable phages to evade multiple defenses yet remain vulnerable to some systems that target RNA or modified nucleobases.
| Original language | English |
|---|---|
| Pages (from-to) | 1173-1190.e9 |
| Number of pages | 28 |
| Journal | Cell Host and Microbe |
| Volume | 33 |
| Issue number | 7 |
| DOIs | |
| Publication status | Published - 2025 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository as part of the Taverne amendment. More information about this copyright law amendment can be found at https://www.openaccess.nl.Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Keywords
- anti-phage systems
- CRISPR-Cas
- DNA modification
- phage defenses
- phages
- restriction-modification