Physical metallurgy of medium-Mn advanced high-strength steels

Binhan Sun, Alisson Kwiatkowski da Silva, Yuxiang Wu, Yan Ma, Hao Chen, Colin Scott, Dirk Ponge, Dierk Raabe

Research output: Contribution to journalArticleScientificpeer-review

18 Citations (Scopus)

Abstract

Steels with medium manganese (Mn) content (3∼12 wt-%) have emerged as a new alloy class and received considerable attention during the last decade. The microstructure and mechanical response of such alloys show significant differences from those of established steel grades, especially pertaining to the microstructural variety that can be tuned and the associated micromechanisms activated during deformation. The interplay and tuning opportunities between composition and the many microstructural features allow to trigger almost all known strengthening and strain-hardening mechanisms, enabling excellent strength-ductility synergy, at relatively lean alloy content. Previous investigations have revealed a high degree of microstructure and deformation complexity in such steels, but the underlying mechanisms are not adequately discussed and acknowledged. This encourages us to critically review and discuss these materials, focusing on the progress in fundamental research, with the aim to obtain better understanding and enable further progress in this field. The review addresses the main phase transformation phenomena in these steels and their mechanical behaviour, covering the whole inelastic deformation regime including yielding, strain hardening, plastic instability and damage. Based on these insights, the relationships between processing, microstructure and mechanical properties are critically assessed and rationalized. Open questions and challenges with respect to both, fundamental studies and industrial production are also identified and discussed to guide future research efforts.

Original languageEnglish
Pages (from-to)786-824
Number of pages39
JournalInternational Materials Reviews
Volume68
Issue number7
DOIs
Publication statusPublished - 2023
Externally publishedYes

Fingerprint

Dive into the research topics of 'Physical metallurgy of medium-Mn advanced high-strength steels'. Together they form a unique fingerprint.

Cite this