Plutonic Rocks as Protection Layers to Concrete Exposed to Ultra-High Temperature

Research output: Contribution to journalArticleScientificpeer-review

16 Downloads (Pure)

Abstract

Concrete structures perform poorly when withstanding thermal shock events, usually requiring repair or replacement after one single instance. In certain industries (such as petrol, metallurgic and ceramics), these events are not only likely but frequent, which represents a considerable financial burden. One option to solve this issue would be to decrease the heating rate imposed onto the concrete material through the use of a protective surface layer. In this work, the suitability of dunite and microgabbro as protective materials is explored through X-ray diffraction, thermal dilation, optical microscopy, X-ray microtomography, thermo-gravimetric analysis and a compressive test. Further, the thermal dilation was used as an input to simulate a composite concrete-rock wall and the respective stresses caused by a thermal shock event. The dehydration of chrysotile in dunite and the decomposition of analcime, chamosite and pumpellyite in microgabbro were both favourable for the performance of the stones in the desired application. The thermal stability and deformation were found in the range of what can be applied directly on concrete; however, it was clear that pre-heating treatment results in a far more durable system in a cyclic thermal load situation.
Original languageEnglish
Article number3490
Number of pages16
JournalMaterials
Volume15
Issue number10
DOIs
Publication statusPublished - 2022

Keywords

  • dunite
  • microgabbro
  • thermal decomposition
  • stone-concrete composite

Fingerprint

Dive into the research topics of 'Plutonic Rocks as Protection Layers to Concrete Exposed to Ultra-High Temperature'. Together they form a unique fingerprint.

Cite this