Poincaré-Bendixson Limit Sets in Multi-Agent Learning

Aleksander Czechowski, Georgios Piliouras

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

1 Citation (Scopus)
13 Downloads (Pure)

Abstract

A key challenge of evolutionary game theory and multi-agent learning is to characterize the limit behavior of game dynamics. Whereas convergence is often a property of learning algorithms in games satisfying a particular reward structure (e.g., zero-sum games), even basic learning models, such as the replicator dynamics, are not guaranteed to converge for general payoffs. Worse yet, chaotic behavior is possible even in rather simple games, such as variants of the Rock-Paper-Scissors game. Although chaotic behavior in learning dynamics can be precluded by the celebrated Poincaré-Bendixson theorem, it is only applicable to low-dimensional settings. Are there other characteristics of a game that can force regularity in the limit sets of learning? We show that behavior consistent with the Poincaré-Bendixson theorem (limit cycles, but no chaotic attractor) can follow purely from the topological structure of the interaction graph, even for high-dimensional settings with an arbitrary number of players and arbitrary payoff matrices. We prove our result for a wide class of follow-the-regularized leader (FoReL) dynamics, which generalize replicator dynamics, for binary games characterized interaction graphs where the payoffs of each player are only affected by one other player (i.e., interaction graphs of indegree one). Since chaos occurs already in games with only two players and three strategies, this class of non-chaotic games may be considered maximal. Moreover, we provide simple conditions under which such behavior translates into efficiency guarantees, implying that FoReL learning achieves time-averaged sum of payoffs at least as good as that of a Nash equilibrium, thereby connecting the topology of the dynamics to social-welfare analysis.

Original languageEnglish
Title of host publicationInternational Conference on Autonomous Agents and Multiagent Systems, AAMAS 2022
PublisherInternational Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS)
Pages318-326
Number of pages9
ISBN (Electronic)978-171385433-3
Publication statusPublished - 2022
Event21st International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2022 - Auckland, Virtual, New Zealand
Duration: 9 May 202213 May 2022

Publication series

NameProceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS
Volume1
ISSN (Print)1548-8403
ISSN (Electronic)1558-2914

Conference

Conference21st International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2022
Country/TerritoryNew Zealand
CityAuckland, Virtual
Period9/05/2213/05/22

Bibliographical note

Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Keywords

  • Follow-the-Regularized Leader
  • Poincaré-Bendixson Theorem
  • Polymatrix Games
  • Regret Minimization
  • Replicator Dynamics

Fingerprint

Dive into the research topics of 'Poincaré-Bendixson Limit Sets in Multi-Agent Learning'. Together they form a unique fingerprint.

Cite this