Port Accessibility Depends on Cascading Interactions between Fleets, Policies, Infrastructure, and Hydrodynamics

Floor P. Bakker*, Solange van der Werff, Fedor Baart, Alex Kirichek, Sander De Jong, Mark van Koningsveld

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

73 Downloads (Pure)

Abstract

Reducing waiting times is crucial for ports to be efficient and competitive. Important causes of waiting times are cascading interactions between realistic hydrodynamics, accessibility policies, vessel-priority rules, and detailed berth availability. The main challenges are determining the cause of waiting and finding rational solutions to reduce waiting time. In this study, we focus on the role of the design depth of a channel on the waiting times. We quantify the performance of channel depth for a representative fleet rather than the common approach of a single normative design vessel. The study relies on a mesoscale agent-based discrete-event model that can take processed Automatic Identification System and hydrodynamic data as its main input. The presented method’s validity is assessed by hindcasting one year of observed anchorage area laytimes for a liquid bulk terminal in the Port of Rotterdam. The hindcast demonstrates that the method predicts the causes of 73.4% of the non-excessive laytimes of vessels, thereby correctly modelling 60.7% of the vessels-of-call. Following a recent deepening of the access channel, cascading waiting times due to tidal restrictions were found to be limited. Nonetheless, the importance of our approach is demonstrated by testing alternative maintained bed level designs, revealing the method’s potential to support rational decision-making in coastal zones.
Original languageEnglish
Article number1006
Number of pages29
JournalJournal of Marine Science and Engineering
Volume12
Issue number6
DOIs
Publication statusPublished - 2024

Keywords

  • port performance
  • Automatic Identification System data
  • mesoscopic traffic model
  • tidal windows
  • representative fleet

Fingerprint

Dive into the research topics of 'Port Accessibility Depends on Cascading Interactions between Fleets, Policies, Infrastructure, and Hydrodynamics'. Together they form a unique fingerprint.

Cite this