Position Sensorless Drive and Online Parameter Estimation for Surface-Mounted PMSMs Based on Adaptive Full-State Feedback Control

Yu Yao, Yunkai Huang, Fei Peng, Jianning Dong

Research output: Contribution to journalArticleScientificpeer-review

2 Citations (Scopus)
39 Downloads (Pure)

Abstract

In this article, a position sensorless drive and online parameter estimation method for surface-mounted permanent magnet synchronous machines-based on adaptive full-state feedback current control is proposed. The position sensorless drive is established by the detection of the back-electromotive force in the gamma delta synchronous reference frame, which is effective at the medium-speed and high-speed range. Besides, accurate estimation of the winding resistance, the stator inductance, and the flux linkage of the PM is achieved independently. Compared with the traditional recursive-least-square methods, the proposed parameter identification method can be easily implemented because of the significantly reduced execution time. With the help of the parameter identification, the precise position estimation can be achieved by the proposed sensorless control method regardless of the parameter variation during the operation. The stability of the proposed method is proved by the Lyapunov-function method. Finally, the effectiveness of the proposed method is validated by the simulation and experimental results.

Original languageEnglish
Article number8918268
Pages (from-to)7341-7355
Number of pages15
JournalIEEE Transactions on Power Electronics
Volume35
Issue number7
DOIs
Publication statusPublished - 2020

Keywords

  • Lyapunov function
  • parameter estimation
  • position sensorless drive
  • surface-mounted permanent magnet synchronous machines (PMSM)

Fingerprint Dive into the research topics of 'Position Sensorless Drive and Online Parameter Estimation for Surface-Mounted PMSMs Based on Adaptive Full-State Feedback Control'. Together they form a unique fingerprint.

Cite this