Abstract
A new approach is proposed to numerically predict and study atmospheric corrosion for ranging droplet size distributions and the influence of the droplet geometry. The proposed methodology allows for a corrosion prediction based on observed droplet size distributions and droplet contact angles. A mechanistic finite element model, including oxygen transport and Butler-Volmer kinetics, is solved in order to obtain the current density as a function of the droplet geometry. This is done for a range of both droplet radii and contact angles. The computed corrosion current densities are then used as input for imposed droplet size distributions. This allows for a calculated material loss estimation for different distributions and electrolyte configurations and shows the extent of the impact of the droplet size distribution on atmospheric corrosion.
Original language | English |
---|---|
Article number | 110308 |
Number of pages | 11 |
Journal | Corrosion Science |
Volume | 202 |
DOIs | |
Publication status | Published - 2022 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- Atmospheric corrosion
- Droplet geometry
- Droplet size distribution
- Modelling
- Size distribution