Predicting the influence of combined oxygen and glucose gradients based on scale-down and modelling approaches for the scale-up of penicillin fermentations

Agnes Janoska*, Joran Buijs, Walter M. van Gulik

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

3 Downloads (Pure)

Abstract

In large scale fermentors the cultivated cells are exposed to dynamic changes in the nutrient concentrations due to imperfect mixing. Based on the characterization of these nutrient gradients in space and time, a rational scale down design can be obtained. This study focuses on the combined gradients of dissolved sugar and oxygen concentrations. Based on a recent computational fluid dynamics (CFD) study, firstly a scale-down design was developed. From intracellular metabolite measurements during these scale-down experiments, the metabolic behavior of the cells under highly dynamic conditions was revealed. Under the combined influence of oscillating glucose and oxygen concentrations, the penicillin production declined to 50 % of the value under steady state conditions. This decline was similar as observed during glucose oscillations alone. The influence of oxygen oscillations on the levels of the majority of the intracellular metabolites analyzed was negligible, although these metabolites were strongly affected by the varying oxygen levels under solely oxygen oscillations. Additionally, a metabolic structured kinetic model was developed and validated with data from glucose and oxygen oscillation experiments. This model can be coupled to CFD simulations to obtain an accurate prediction of the performance of industrial strains in space and time in large industrial scale bioreactors.

Original languageEnglish
Pages (from-to)100-112
JournalProcess Biochemistry
Volume124
DOIs
Publication statusPublished - 2023

Keywords

  • Combined gradients
  • Metabolic modelling
  • Metabolite pools
  • Oxygen and glucose fluctuations
  • Penicillin production
  • Scale-down

Fingerprint

Dive into the research topics of 'Predicting the influence of combined oxygen and glucose gradients based on scale-down and modelling approaches for the scale-up of penicillin fermentations'. Together they form a unique fingerprint.

Cite this