Prediction of changes in seafloor depths based on time series of bathymetry observations: Dutch north sea case

Reenu Toodesh, Sandra Verhagen, Anastasia Dagla

Research output: Contribution to journalArticleScientificpeer-review

1 Downloads (Pure)

Abstract

Guaranteeing safety of navigation within the Netherlands Continental Shelf (NCS), while efficiently using its ocean mapping resources, is a key task of Netherlands Hydrographic Service (NLHS) and Rijkswaterstaat (RWS). Resurvey frequencies depend on seafloor dynamics and the aim of this research is to model the seafloor dynamics to predict changes in seafloor depth that would require resurveying. Characterisation of the seafloor dynamics is based on available time series of bathymetry data obtained from the acoustic remote sensing method of both single-beam echosounding (SBES) and multibeam echosounding (MBES). This time series is used to define a library of mathematical models describing the seafloor dynamics in relation to spatial and temporal changes in depth. An adaptive, functional model selection procedure is developed using a nodal analysis (0D) approach, based on statistical hypothesis testing using a combination of the Overall Model Test (OMT) statistic and Generalised Likelihood Ratio Test (GLRT). This approach ensures that each model has an equal chance of being selected, when more than one hypothesis is plausible for areas that exhibit varying seafloor dynamics. This ensures a more flexible and rigorous decision on the choice of the nominal model assumption. The addition of piecewise linear models to the library offers another characterisation of the trends in the nodal time series. This has led to an optimised model selection procedure and parameterisation of each nodal time series, which is used for the spatial and temporal predictions of the changes in the depths and associated uncertainties. The model selection results show that the models can detect the changes in the seafloor depths with spatial consistency and similarity, particularly in the shoaling areas where tidal sandwaves are present. The predicted changes in depths and uncertainties are translated into a probability risk-alert map by evaluating the probabilities of an indicator variable exceeding a certain decision threshold. This research can further support the decision-making process when optimising resurvey frequencies.

Original languageEnglish
Article number931
Number of pages28
JournalJournal of Marine Science and Engineering
Volume9
Issue number9
DOIs
Publication statusPublished - 2021

Keywords

  • Bathymetry
  • Decision-making
  • Prediction
  • Sandwaves
  • Statistical hypothesis testing
  • Time series

Fingerprint

Dive into the research topics of 'Prediction of changes in seafloor depths based on time series of bathymetry observations: Dutch north sea case'. Together they form a unique fingerprint.

Cite this